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Abstract

A rigorous analytical approach is developed to test for the existence of a continuous nonlinear

functional relationship between systems. We compare the application of this nonlinear local tech-

nique to the existing analytical linear global approach in the setting of increasing additive noise.

For natural systems with unknown levels of noise and nonlinearity, we propose a general framework

for detecting coupling. Lastly, we demonstrate the applicability of this method to detect coupling

between simultaneous experimentally measured intracellular voltages between neurons within a

mammalian neuronal network.

PACS numbers: 5.45.Tp, 87.10.+e, 87.17.Nn
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Faced with an experimental system whose equations are unknown, it is often important

to determine when components of the system are coupled. An example of current interest

is the behavior of neural systems. We now understand that many neural cognitive phenom-

ena, from insects [1] to mammals [2], correspond to computations performed in transiently

synchronous ensembles of neurons. But in order to define such functional ensembles, one

must first determine whether the neurons are coupled.

Neural systems are examples of natural systems where the elements are highly nonlinear,

and beset with an indeterminate amount of noise. We expect that all natural systems will

present two types of impediments to detection of coupling: noise and nonlinearity. We

introduce here the idea that there are two approaches to coupling detection, each of which

are well suited to particular balances of noise and nonlinearity. If the balance is unknown,

neither approach alone can be relied upon to detect coupling.

Crosscorrelation and continuity are examples of statistics suited to extreme cases of the

balance between noise and nonlinearity. For instance, crosscorrelation probes globally for

the simplest functional relation, linear, and is the most tolerant to noise. Noise tolerance

comes from the linear nature of the assumed functional form which allows added noise

to separate from the signal and average to zero. Crosscorrelation is well-developed and

analytic estimates of significance for the statistic exist [8] obviating the need for bootstrap

numerical testing [9]. Fig. 1 schematically illustrates our present view of coupling detection.

Unfortunately, in many experimental situations we do not know which quadrant from Fig.

1 is appropriate.

Continuity makes few assumptions about the nature of an underlying functional rela-

tionship, asking only whether a small region of data about a system statepoint from one

system, maps to a corresponding small region about a similar system state point in another

system [4, 6]. Continuity is thus a local property requiring minimal knowledge of the local

structure of a function (e.g. no Jacobian must be accurately fit [7]). Nonlinear measures

of synchronization and prediction have recently been developed, which are capable of de-

tecting coupling between nonlinear systems when linear methods fail. Previous work with

spinal cord motoneurons were consistent with the usefulness of nonlinear methods to identify

certain neuronal interactions [3]. Nevertheless, a continuity measure underlies many of the

recent approaches, including prediction at zero time, mutual nearest neighbors, and mutual

variance [3, 5].
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We show here that, like crosscorrelation, we can put a continuity statistic and its associ-

ated significance in analytical setting that eliminates the need for extensive numerical work

to support the results. Previous attempts to quantify such measures have not dealt with

the independence of sampled neighborhoods rigorously [4], or have resorted to bootstrap

methods in order to establish the significance of continuity [3].

The continuity of a function relating multivariate data sets, X and Y, is quantified using

local measures of continuity about selected fiduciary points, xi. The multivariate data can

be simultaneous measurements of several variables or, in our examples, delay-reconstructions

from time series. Within a distance δ from xi we can collect the nδi nearest neighbors to

xi. The xi point has a corresponding time indexed point yi in the Y data set. Within a

distance from yi will be nεi nearest neighbors of yi. For each fiducial point pair (xi, yi), a

count mi of the subset of nδi points that have corresponding time indexed points within nεi

are determined.

Under the null hypothesis, that there is no functional relationship between the two data

sets, the nearest neighbors in δ will be no more likely to map into than if they had been

chosen randomly from X. This can be thought of as a classic ’urn’ problem [10], where all

of the points in the δ set are red, and the rest of the X points are blue. If a continuous

function exists relating X and Y, given an there will always be a δ where all red points are

within . Since we are dealing with real data rather than analytical functions, we relax the

strict definition and allow mi ≤ nδi be the number of red balls in the set.

Under the null hypothesis, points are randomly mapped from X to Y, and a handful nεi

are selected from Y without replacement. The number of mi points in nεi should therefore

fall under the hypergeometric distribution h(k|nδ, nε, N) =

Ã
nδ

k

!Ã
N − nδ

nε − k

!
Ã
N

nε

! [10], where

Ã
A

B

!
is the binomial coefficient. The probability that k points from nδi map into is equal

to the number of combinations of k points that could have mapped into ,

Ã
nδ

k

!
, multiplied

by the number of combinations of points from outside δ that could have mapped into ,Ã
N − nδ

nε − k

!
, divided by the total number of combinations of nεi points that could have been
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selected,

Ã
N

nε

!
.

We want to estimate the probability that mi or fewer points from δ map into by chance.

This probability is the sum of the cumulative hypergeometric function for k = 0 . . .mi

hcum(m|nδ, nε, N) =
miP
k=0

h(k|nδ, nε, N).
We define significant fiduciary points as those where hcum suggests thatmi are significant.

Global continuity is then estimated by counting the number of significant fiduciary points,

Nsig. The significance limit may be estimated by m∗ = min{mi|hcum(mi|nδ, nε, N) > 0.95}
(note nδ and nε are fixed), which sets a thresholdm∗, the probability of which is the smallest

integer value for which mi is expected to occur with probability greater than 0.95. For a

given m∗ the corresponding p∗ = P(mi > m∗) = 1 − hcum(m∗|nδ, nε, N) is the probability
that more points than m∗ will map from δ into , which will be less than probability 0.05.

The count of the number of fiducial points at which mi > m∗ we call Nsig. To quantify

the significance of the global continuity, we use the cumulative binomial distribution to

determine the probability that the number of points that reached significance, Nsig, might

have done so at random [10], bcum(Nsig|Nf , p∗) =
NsigP
r=0

Nf !

r!(Nf−r)!p
r
∗(1− p∗)Nf−r, using the given

p∗ and Nf (number of fiduciary points). If the cumulative binomial statistic is larger than

0.95 then we can reject our null hypothesis that the two data sets are uncoupled.

Using the hypergeometric function and the binomial distribution assumes that the fidu-

ciary points and their neighbors must be independent, implying that the local neighborhoods

cannot overlap. Overlapping the neighborhoods around the fiduciary points would result in

larger numbers of significant fiduciary points than would be anticipated by the binomial

statistic. To prevent overlap the state space is tessellated into regions with equal numbers

of points. Tessellation is performed by finding the first principal component of the entire

data set (the direction for which the most variance in the data is observed), projecting and

rank ordering the points onto the first principal component, and tesselating the data set at

the median point. Each of the two resulting regions are then similarly tessellated by finding

the first principal components of each region and subdividing at their medians. The fiducial

points were selected as the points closest to the geometric center of each tessellation.

Such a measure of continuity is dependent upon the selection of neighborhood sizes nδ

and nε. Without a priori knowledge of the data set’s underlying dynamics or noise, a range

of nδ and nε are examined for a range of embedding dimensions.
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Uni-directionally coupled Hénon maps were used to test the sensitivity of the continuity

measure: Y (t+1) = 1.4−Y (t)2+0.3Y (t−1),X(t+1) = 1.4−(CY (t)+(1−C)X(t))X(t)+
0.3X(t−1), where C sets the coupling strength. For weak coupling, C= 0.02, after discarding
the first 1000 iterated points to avoid transient dynamics, the subsequent 8000 iterations

were used for analysis (top panel, Fig. 2). The second panel shows crosscorrelation which

was calculated on the data , with the Bartlet estimator [8] indicated as a 95% confidence

limit (second panel). One would expect no more than 5% of the crosscorrelation values to

be greater than this confidence interval by chance, and the data in this figure suggest no

significant linear crosscorrelation.

The next panels in Figure 2 illustrate how a small region of points labeled δ in the drive

system (third panel left), maps to the correspondingly indexed points in the response system

(third panel right). The tessellation of the Hénon system is illustrated in the driver data

(third panel left of Figure 2). Such tessellation was applied to the drive system until 7 points

remained within each tessellation, following which the most central points within the drive

system were selected as fiducial, and the corresponding time indexed points in the response

system were identified as fiducial. The regions of the response system were selected as

nearest neighbors about these response fiducial points. The probabilities associated with

both forward drive to response and reverse response to drive mappings were determined, by

alternately selecting the driver or response system to be tessellated.

The bottom panel of Figure 2 illustrates the result of the continuity statistic. Significant

continuity is not identified for the drive to response system, as anticipated in the weak

coupling regime. Nevertheless, there is significant continuity identified from the response to

the drive system. In a unidirectional drive-response system, the response system at all finite

coupling strengths always contains information and a significant mapping from response to

drive. In such systems, the appearance of a functional relationship from drive to response

is seen only at higher coupling strengths at the onset of generalized synchronization.

The response of these two methods, crosscorrelation and continuity, as a function of

additive noise are instructive. Figure 3 shows a comparison of sensitivity of the methods on

coupled Hénon maps with 4 levels of Gaussian additive noise: 0, 0.125, 0.25, and 0.5 standard

deviations, σ, of the amplitude distribution measured from the drive and response data set

respectively. Without additive noise, the continuity measure is far more sensitive to weak

coupling in this system than is crosscorrelation. However, as noise increases, crosscorrelation
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becomes a more robust determinate of coupling in this nonlinear system.

To demonstrate whether two ensembles of neurons from the brain are coupled, we record

from simultaneously impaled neurons within a live neuronal network, each from within sep-

arate neighborhoods of neurons. We turn off the spike generating mechanism in the impaled

neurons in order to use them as receivers of inputs from their respective neighborhoods, then

test whether the received signals are related. Rats brain slices were prepared as in [11]. Si-

multaneous intracellular voltage measurements from two neurons were recorded using whole

cell patch clamp. Action potentials were suppressed by hyperpolarizing, permitting accurate

measurement of the input synaptic currents. Coupling was measured under two conditions

that altered the functional relationship between the neurons: slices bathed in fluid contain-

ing normal potassium concentration (3.5 mM [K+]) versus mildly elevated potassium (5.5

mM [K+]). This elevation in extracellular potassium causes a small increase in neuronal

coupling [11].

Figure 4 illustrates the voltage recordings from 2 neurons in this system, as a function

of low (left column) and high (right column) [K+] respectively. Time delay embedding lags

were determined from the decay of the mutual information between the embedded time

series as a function of lag [12]. Lag selected was the minimum integer value causing decay

of the mutual information to 1/e of its value at 0 lag. Without knowledge of the underlying

dynamics of the neuronal data, we tested for continuity at a range of embedding dimensions,

d, showing data for d=1, 2 and 3 in the figure.

The low [K+] condition is associated with no evidence of substantial coupling, in either

crosscorrelation or continuity (Figure 4 left). At the higher [K+] level, these neurons are

more heavily coupled within the network, and crosscorrelation is significant (Figure 4 right).

In addition, continuity in elevated [K+], both forward and inverse, is significant at d=1

and 3 (Figure 4 right). In this neuronal network, we do not know (and cannot determine)

the full nature of functional relationship between the neurons. Nevertheless, our finding of

significant continuity establishes that these 2 neurons are functionally related, implying a

common dynamical link.

An unknown balance between noise and nonlinearity in systems where an accurate model

of the underlying equations is lacking may render it impossible to rely upon either global

linear or local nonlinear methods alone to test for coupling between systems. We propose

that a balanced approach to coupling identification in such systems is required, and will
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FIG. 1: Schematic of balance of noise versus nonlinearity, and optimal coupling detection schemes.

In low noise conditions, nonlinear methods have an advantage over linear methods for nonlinear

systems. Linear methods are well suited to detection in noisy linear systems. It is unknown how

noise affects the detection for highly nonlinear systems. For data from many natural systems, the

quadrant is unknown a priori.

FIG. 2: Weakly coupled Hénon systems, with raw data from drive and response time series shown

in the upper panel. Second panel shows crosscorrelation, with 95% confidence intervals from the

Bartlett estimator indicated as solid lines. Third panel shows tessellation of driver Hénon system,

and a δ region is indicated. Points from the δ region mapped to dark circles within the response

system (right), and a fraction of these points fall within the region indicated. Lower panel

shows continuity results with probability indicated as grey scale, dark being highly significant. We

assume that epsilon will in general be larger than delta, and therefore only calculate values above

the diagonal line.

expand on these findings in a more detailed report [13]. By using these two methods with

contrasting assumptions we have covered the whole of Figure 1. We speculate that the

question mark in the noisy nonlinear quadrant in Figure 1 might be a global linear approach

such as crosscorrelation, but this remains to be proven. Most importantly, we have elevated

the continuity statistic beyond the usual ad hoc defintions requiring massive numerical work

to gain statistical significance to an analytical level on par with the crosscorrelation where

significance can be calculated directly.

Work supported by NIH F31MH12421 (T.N.), and 2R01MH50006 and 7K0ZMH01493

(S.S).

∗ Corresponding Author; Email address: sschiff@gmu.edu

FIG. 3: Sensitivity of crosscorrelation versus continuity as a function of coupling strength and

additive noise between Hénon systems.Continuity is more sensitive for the nonlinear case, but

crosscorrelation is far more robust at all levels of additive noise

7



FIG. 4: Simultaneously measured intracellular voltages from two neurons as a function of low, left,

and high, right, [K+] levels. No evidence of significant coupling, linear or nonlinear, is observed in

low [K+], but evidence for both cross correlation and continuity (forward and reverse) is observed

in high [K+].
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